Psience Quest

Full Version: The Jazz of Physics: Cosmologist and Saxophonist Stephon Alexander on Decoding the So
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
The Jazz of Physics: Cosmologist and Saxophonist Stephon Alexander on Decoding the Song of the Universe

Maria Popova

Quote:Sound is a vibration that pushes a medium, such as air or something solid, to create traveling waves of pressure. Different sounds create different vibrations, which in turn create different pressure waves. We can draw pictures of these waves, called waveforms. A key point in the physics of vibrations is that every wave has a measurable wavelength and height. With respect to sound, the wavelength dictates the pitch, high or low, and the height, or amplitude, describes the volume.

If something is measurable, such as the length and height of waves, then you can give it a number. If you can put a number to something, then you can add more than one of them together, just by adding numbers together. And that’s what Brian was doing — adding up waveforms to get new ones. He was mixing simpler waveforms to make intricate sounds.
To physicists, this notion of adding up waves is known as the Fourier transform. It’s an intuitive idea, clearly demonstrated by dropping stones in a pond. If you drop a stone in a pond, a circular wave of a definite frequency radiates from the point of contact. If you drop another stone nearby, a second circular wave radiates outward, and the waves from the two stones start to interfere with each other, creating a more complicated wave pattern. What is incredible about the Fourier idea is that any waveform can be constructed by adding waves of the simplest form together. These simple “pure waves” are ones that regularly repeat themselves.
[…]
I was enthralled by the idea of decoding what I saw as the Rosetta stone of vibration — there was the known language of how waves create sound and music, which Eno was clearly skilled with, and then there was the unclear vibrational message of the quantum behavior in the early universe and how it has created large-scale structures. Waves and vibration make up the common thread, but the challenge was to link them in order to draw a clearer picture of how structure is formed and, ultimately, us.