Psience Quest

Full Version: How Space and Time Could Be a Quantum Error-Correcting Code
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
How Space and Time Could Be a Quantum Error-Correcting Code

David Ope



Quote:Now, even as small quantum computers are materializing in labs around the world, useful ones that will outclass ordinary computers remain years or decades away. Far more efficient quantum error-correcting codes are needed to cope with the daunting error rates of real qubits. The effort to design better codes is “one of the major thrusts of the field,” Aaronson said, along with improving the hardware.

But in the dogged pursuit of these codes over the past quarter-century, a funny thing happened in 2014, when physicists found evidence of a deep connection between quantum error correction and the nature of space, time and gravity. In Albert Einstein’s general theory of relativity, gravity is defined as the fabric of space and time — or “space-time” — bending around massive objects. (A ball tossed into the air travels along a straight line through space-time, which itself bends back toward Earth.) But powerful as Einstein’s theory is, physicists believe gravity must have a deeper, quantum origin from which the semblance of a space-time fabric somehow emerges.

That year — 2014 — three young quantum gravity researchers came to an astonishing realization. They were working in physicists’ theoretical playground of choice: a toy universe called “anti-de Sitter space” that works like a hologram. The bendy fabric of space-time in the interior of the universe is a projection that emerges from entangled quantum particles living on its outer boundary. Ahmed Almheiri, Xi Dong and Daniel Harlow did calculations suggesting that this holographic “emergence” of space-time works just like a quantum error-correcting code. They conjectured in the Journal of High Energy Physics that space-time itself is a code — in anti-de Sitter (AdS) universes, at least. The paper has triggered a wave of activity in the quantum gravity community, and new quantum error-correcting codes have been discovered that capture more properties of space-time.